GOVERNANCE FOR CYBER SECURITY AND RESILIENCE IN THE ARCTIC

USE OF BLOCKCHAIN FOR ENSURING CYBER SECURITY IN THE ARCTIC.

Nasteka Aleksei Graduate student PUKHOV INSTITUTE FOR MODELING IN ENERGY ENGINEERING NAS of UKRAINE

HOW THE BLOCKCHAIN TECH WILL ENSURE CIIP SAFE?

CYBERSECURITY RELATIONSHIPS BETWEEN OTHER TYPE OF SECURITY

BLOCKCHAIN

Decentralized Peer-to-peer network Distributed ledger

> Data safe- no possible to change Add new Data Timestamp Honesty and transparency Security (identification, authentication, authorization) Integrity

CRYPTOGRAPHIC HASH FUNCTION

A hash function is any function that can be used to map data of arbitrary size to data of a fixed size.

A **cryptographic hash function** is a special class of hash function that has certain properties which make it suitable for use in cryptography. It is a mathematical algorithm that maps data of arbitrary size to a bit string of a fixed size and is designed to be a one-way function, that is, a function which is infeasible to invert.

SHA-256	Bitcoin, Bitcoin Cash, Namecoin, NuBits, Peercoin, SHACAL-2, DSA, IPSEC, PGP	SHA-2 (Secure Hash Algorithm 2) is a set of <u>cryptographic hash</u> functions. The SHA-2 family consists of six hash functions with <u>digests</u> (hash values) that are 224, 256, 384 or 512 bits: SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256.	United States <u>National</u> <u>Security Agency</u> . 2001	<u>Merkle–Damgård construction</u> with <u>Davies–Meyer</u> compression function.
Ethash (DaggerH ashimoto)	Etherium, Etherium Classic, OmissGO	Ethash is the proof-of-work function in Ethereum-based blockchain currencies.It uses Keccak, a hash function eventually standardized to SHA-3. Ethash has been designed to be ASIC-resistant via memory-hardness and easily verifiable.It also uses a slightly modified version of earlier Dagger and Hashimoto hashes to remove computational overhead.	Vitalik Buterin 2015	Ethash uses an initial 1 GB dataset known as the Ethash DAG and a 16 MB cache for light clients to hold. These are regenerated every 30,000 blocks, known as an epoch. Miners grab slices of the DAG to generate mix-hashes using transaction and receipt data, along with a cryptographic nonce to generate a hash below a dynamic target difficulty.
Scrypt	Litecoin, Dogecoin, Gulden, Potcoin	scrypt is a password-based <u>key derivation function</u> originally for the <u>Tarsnap</u> online backup service.	<u>Colin Percival</u> 2009	The scrypt function is designed to hinder such attempts by raising the resource demands of the algorithm. Specifically, the algorithm is designed to use a large amount of memory compared to other password-based KDFs
X11	Dash	a <u>proof of work</u> algorithm with a <u>hash function</u> called "X11", with eleven rounds of hashing, and the average time to mine a coin was around two a half minutes		
Crypto Night	Monero, <u>Monero</u>	CryptoNote is an <u>application layer</u> protocol that powers several decentralized privacy-oriented <u>digital currencies</u> .	2012	
Equihash	Bitcoin Private, Zcash, Zcoin, Bitcoin Gold	Equihash is a memory-oriented <u>Proof-of-Work</u> algorithm	Alex Biryukov and Dmitry Khovratovich, 2016	
X11 Gost	Sibcoin			
BLAKE2b	Zcash, FreeBSD Ports, OpenSSI, Crypto++, Libsodium, Botan			
Keccak (SHA-3)		SHA-3 (Secure Hash Algorithm 3) is the latest member of the <u>Secure</u> <u>Hash Algorithm</u> family of standards. SHA-3 is a subset of the broader cryptographic primitive family Keccak.	Guido Bertoni, <u>Ioan</u> <u>Daemen</u> , Michaël Peeters, and <u>Gilles Van</u> <u>Assche</u> . 2015	Keccak is based on a novel approach called <u>sponge</u> <u>construction</u> .

TYPES AND OBJECTS OF ATTACK

- 51% Attack
- Attack on network nodes Founders, partners Attack Black holes Team **Employees** Attacks on users wallets Hired personnel Denial-of-service (DoS) and distributed denial-of-service (DDoS) attacks Man-in-the-middle (MitM) attack Infrastructure Phishing and spear phishing attacks E-mail Password attack Network Cross-site scripting (XSS) attack Domain Web site Server Birthday attack Wallets Communication Malware attack Apps and process Hacking Crypto Exchanges Social networks Chats forums

CHRONOLOGY OF ATTACKS

2010-2015		2015		2016		2017		2018	
Bitcoin Vulner source code	\$184M	Bitstamp Hacking Crypto Exchanges	\$5.1 M	BitFinex <i>Attacks on users</i> <i>wallets</i>	\$72M	CoinDash Attack on network nodes	\$7M	Coincheck Japan Hacking Crypto Exchanges	\$500 m
Mt. Gox Hacking Crypto Exchanges	\$473M			The DAO Vulnerophey source	\$50 M	Parity Wilnerdomty Source code	\$32M	Coinrail South Korea Hacking Crypto Exchanges	\$40 m
				Steem.mit.com Hacking private account	\$85K	Veritasium <i>Attacks on</i> users wallets	\$8M		
						Tehter Attacks on company's servers	\$30,9 M		

INFORMATION SECURITY PARADIGM: CONFIDENTIALITY, INTEGRITY, ACCESSIBILITY, OBSERVATION PROTECTION ACORDING TO <u>ND TPI 2.5-004-99</u>

- Confidentiality
- Integrity
- Accessibility
- Observation

CONCLUSION

PROBLEMS THAT CAN BE SOLVED BY USING THE BLOCKCHAIN TECHNOLOGY ARE:

- Transparency and Trust. It's immutable and append-only records can only be added to that database and never removed or changed. It's updateable only via consensus or agreement on the state of the data among peers
- Decentralization. Blockchain databases are distributed among multiple computers (nodes) that store full or partial copies of that database. Remove monopoly and single point of authority and keep trust between parties
- Security and Fraud prevention. The records on blockchain are secured through cryptography. Every transaction is signed with a personal digital signature. If a record is altered, the signature will become invalid and the peer network will know right away that something has happened. Blockchain don't have a single point of failure and can't be changed from a single computer
- Value Exchange & Micropayments. Cryptocurrencies allow transferring value between parties without banks, governments. Transaction cost is almost zero comparing to Visa/Mastercard payments (600,000 transactions for \$0.01 in Stellar)